- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Morrison, Megan (1)
-
Young, Lai-Sang (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
& Ayala, O. (0)
-
- Filter by Editor
-
-
Webb, Barbara (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Webb, Barbara (Ed.)C. eleganslocomotion is composed of switches between forward and reversal states punctuated by turns. This locomotory capability is necessary for the nematode to move towards attractive stimuli, escape noxious chemicals, and explore its environment. Although experimentalists have identified a number of premotor neurons as drivers of forward and reverse motion, how these neurons work together to produce the behaviors observed remains to be understood. Towards a better understanding ofC. elegansneurodynamics, we present in this paper a minimally parameterized, biology-based dynamical systems model of the premotor network. Our model consists of a recurrently connected collection of premotor neurons (the core group) driven by over a hundred sensory and interneurons that provide diverse feedforward inputs to the core group. It is data-driven in the sense that the choice of neurons in the core group follows experimental guidance, anatomical structures are dictated by the connectome, and physiological parameters are deduced from whole-brain imaging and voltage clamps data. When simulated with realistic input signals, our model produces premotor activity that closely resembles experimental data: from the seemingly random switching between forward and reversal behaviors to the synchronization of subnetworks to various higher-order statistics. We posit that different roles are played by gap junctions and synaptic connections in switching dynamics. Using the model we identify signal neurons that strongly influence switches between behavioral states and core neurons that play an important role in integrating signal information. The model produces switching statistics that underlie behaviors such as dwelling versus roaming as a result of the synaptic inputs received.more » « lessFree, publicly-accessible full text available December 29, 2026
An official website of the United States government
